Input Variable Selection for Forecasting Models
نویسندگان
چکیده
The selection of input variables plays a crucial role when modelling time series. For nonlinear models there are not well developed techniques such as AIC and other criteria that work with linear models. In the case of Short Term Load Forecasting (STLF) generalization is greatly influenced by such selection. In this paper two approaches are compared using real data from a Spanish utility company. The models used are neural networks although the algorithms can be used with other nonlinear models. The experiments show that that input variable selection affects the performance of forecasting models and thus should be treated as a generalization problem.
منابع مشابه
Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models
Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This p...
متن کاملVariable Selection in the Kernel Regression Based Short-Term Load Forecasting Model
The short-term load forecasting is an essential problem in energy system planning and operation. The accuracy of the forecasting models depends on the quality of the input information. The input variable selection allows to chose the most informative inputs which ensure the best forecasts. To improve the short-term load forecasting model based on the kernel regression four variable selection wr...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملShort term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملInput Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting
This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removi...
متن کامل